Edmund Optics®

Knowledge Center

 Verified library of trusted technical resources created by our 240+ global engineers.

Filter
Search Results for: Laser Microscopy (135)

Multiphoton Microscopy

Multiphoton microscopy is ideal for capturing high-resolution 3D images with reduced photobleaching and phototoxicity compared to confocal microscopy.

View Now Add to saved content

Confocal Microscopy

Confocal microscopy provides high resolution, elimination of out-of-focus glare due to spatial filtering, and reduction of light-induced damage to the sample.

View Now Add to saved content

Light Sheet Microscopy

Light sheet fluorescence microscopy uses a 2D laser sheet to illuminate a thin slice of the sample and excite fluorescence, reducing phototoxicity and damage.

View Now Add to saved content

Fluorophores and Optical Filters for Fluorescence Microscopy

Want to know more about fluorophores and optical filters for fluorescence microscopy? Find out more information and in stock optical filters at Edmund Optics.

View Now Add to saved content

Laser Polarization: The Importance of Polarization in Laser Applications

Understanding the polarization of laser light is critical for many applications, as polarization impacts reflectance, focusing the beam, and other key behaviors.

View Now Add to saved content

Why Use a Flat Top Laser Beam?

Converting a Gaussian laser beam profile into a flat top beam profile can have numerous benefits including minimized wasted energy and increased feature accuracy.

View Now Add to saved content

Key Parameters of a Laser System

Learn the key parameters that must be considered to ensure you laser application is successful. Common terminology will be established for these parameters.

View Now Add to saved content

Bulk Laser Damage in Glass

Learn why the bulk laser-induced damage threshold (LIDT) of glass is significantly different than the LIDT optical components with coatings, such as AR thin films.

View Now Add to saved content

Common Laser Optics Materials

Understanding the most commonly used laser optics materials will allow for easy navigation of EO’s wide selection of laser optics components.

View Now Add to saved content

Assembling Compact Machine Vision Microscopy Systems with 120i Plan APO Infinity Corrected Objectives

Reduce the size and weight of your high magnification machine vision system with infinity corrected TECHSPEC® 120i Plan APO Infinity Corrected Objectives.

View Now Add to saved content

Why Laser Damage Testing is Critical for UV Laser Applications

Laser Induced Damage Threshold describes the maximum quantity of laser radiation an optic can take before damaging. Learn more at Edmund Optics.

View Now Add to saved content

Effects of Laser Mirror Surface Flatness

View Now Add to saved content

Importance of Beam Diameter on Laser Damage Threshold

The diameter of a laser highly affects an optic’s laser induced damage (LIDT) as beam diameter directly impacts the probability of laser damage.

View Now Add to saved content

A Guide to (Not Over) Specifying Losses in Laser Optics

Overspecifying optical losses in laser systems will not further improve your performance or reliability, but it could cost you additional money and/or time.

View Now Add to saved content

Optical Microscopy Application: Fluorescence

Wondering how fluorescence microscopy works? Find out about the technique, systems, and more at Edmund Optics.

View Now Add to saved content

Laser Damage Threshold Testing

Testing laser induced damage threshold (LIDT) is not standardized, so understanding how your optics were tested is critical for predicting performance.

View Now Add to saved content

Optical Microscopy Application: Phase Contrast

Think you know all the advantages for using phase contrast in optical microscopy? Advantages, image appearance, and technical details can be found at Edmund Optics.

View Now Add to saved content

Optical Microscopy Application: Brightfield Illumination

Looking to use a simple technique for optical microscopy? Check out this article on brightfield illumination to find out more at Edmund Optics.

View Now Add to saved content

Optical Microscopy Application: Darkfield Illumination

Darkfield illumination is the opposite of brightfield illumination. Find out how darkfield differs from brightfield in optical microscopy at Edmund Optics.

View Now Add to saved content

Optical Microscopy Application: Differential Interference Contrast

Differential interference contrast (DIC) is one of the polarization techniques that can be used in optical microscopy. Learn about this technique at Edmund Optics.

View Now Add to saved content

Fluorescence Microscopy: In-Line Illumination with Imaging Filters

Want to know about fluorescence microscopy? Read this article by a Biomedical Product Line Engineer at Edmund Optics to learn more.

View Now Add to saved content

Fluorescence Imaging with Laser Illumination

Fluorescence imaging systems are composed of three major components, an illumination source, a photo-activated fluorophore sample, and detector.

View Now Add to saved content

Metrology for Laser Optics

Metrology is critical for ensuring that optical components consistently meet their desired specifications, especially in laser applications.

View Now Add to saved content

Simplifying Laser Alignment

Many challenges can arise when aligning a laser beam; knowing specific tips and tricks can help simplify the process. Learn more at Edmund Optics.

View Now Add to saved content

Coherent® Laser Selection Guide

Compare Coherent Laser specifications with the Edmund Optics selection guide.

View Now Add to saved content

High Laser Damage AR Coatings

Laser optics high reflectivity mirrors meet exceptional specifications that Edmund Optics' competitors often fail to meet. Learn more at Edmund Optics.

View Now Add to saved content

Common Laser Types

Understanding the most common laser sources, modes of operation, and gain media provides the context for selecting the proper laser for your specific application.

View Now Add to saved content

Understanding and Specifying LIDT of Laser Components

Laser induced damage threshold (LIDT) denotes the maximum laser fluence an optical component can withstand with an acceptable amount of risk.

View Now Add to saved content

Absorption in Laser Optics

Light is absorbed in optical media through several methods including exciting electrons to higher energy states and converting to thermal energy

View Now Add to saved content

Laser Beam Shaping Overview

Learn how to navigate the many available options for shaping the irradiance profile and phase of laser beams to maximize your laser system's performance.

View Now Add to saved content